
Evolutionary Computation in Python

Cosijopii García García1

1Intelligent systems and software development Lab, Universidad del Istmo Campus
Ixtepec. contacto@cosijopii.com
https://www.cosijopii.com/

November 8, 2024



Outline

1 Introduction to Genetic Algorithms
History
Genetic algorithm and their components

2 Hands-On Genetic Algorithms
Single-objective optimization problem
Knapsack problem
The Multiobjective Optimization Problem

2/46



 
 

Section 1

Introduction to Genetic Algorithms



 
 

Section 1

Introduction to Genetic Algorithms
1.1 History



History

• Evolutionary computing is a research area within
computer science. As the name suggests, it is a
special flavour of computing, which draws
inspiration from the process of natural evolution1.

• The power of evolution in nature is evident in the
diverse species that make up our world, each
tailored to survive well in its own niche.

Charles Robert Darwin

1Eiben and Smith, Introduction to Evolutionary Computing, 2015.

5/46



History

• As early as 1948, Turing proposed “genetical or evolutionary search”

• Bremermann conducted computer experiments on ”optimization through
evolution and recombination” in 1962 2.

• In the 1960s three different implementations of the basic idea were
developed in different places3.

3Eiben and Smith, Introduction to Evolutionary Computing, 2015.

6/46



History

• Fogel, Owens, and Walsh introduced evolutionary
programming

• Holland called his method a genetic algorithm
• Rechenberg and Schwefel invented evolution
strategies

• After 15 years that methods conforms the
Evolutionary Computation4(EC)

• Finally in 90’s a fourth stream following the general
ideas emerged, genetic programming by Koza.

John Henry Holland

4Eiben and Smith, Introduction to Evolutionary Computing, 2015.

7/46



 
 

Section 1

Introduction to Genetic Algorithms
1.2 Genetic algorithm and their compo-
nents



Genetics algorithms

• The genetic algorithm (GA) is one of the most popular evolutionary
algorithms. Its research methodology is based on natural evolution, and
was initially conceived by Holland as a way to study adaptive behavior5.

• The canonical or simple genetic algorithm, has a binary representation,
fitness proportionate selection, and low mutation probability6.

• Over the years, new characteristics were developed, one of the most
important is elitism, as well as different types of recombination and
mutation

5Eiben and Smith, Introduction to Evolutionary Computing, 2015.
6Sastry, Goldberg, and Kendall, Search Methodologies, 2014.

9/46



Genetic algorithm

Figure 1: GA7

7Alba and Dorronsoro, Cellular Genetic Algorithms, 2008.
10/46



Genetics algorithms

• Initialization: The initial population
of solutions is randomly generated
across the search space.

• Evaluation: Once the population is
created, the fitness value of every
solution in the population is
calculated.

• Selection: At the selection stage
solutions chosen according to their
fitness value. There are several
forms of selection procedures

• Recombination: Information from
two or more parents are combined
to create a new possible better
solution.

• Mutation: Locally and randomly
modifies a solution. It involves one
or more ways of adding small
perturbations to an individual.

• Replacement: Offspring created
by selection, recombination, and
mutation replaces the original
population by some criterion.

11/46



Representation

• There are different ways to represent the problems, depending on the type
of representation that is used the evolutionary operators, the mutation
and recombination or crossover can vary8.

• Different types of representation exist in evolutionary algorithms and in
genetics algorithms. The most famous representations are: binary, integer,
and real.

8Brabazon, O’Neill, and McGarraghy, Natural Computing Algorithms, 2015.

12/46



Representation-Binary

• Binary representation was the first to be used, and historically many
genetic algorithms (GA), used this representation regardless of the context
of the problem to be solved, this representation is based on strings of bits
that represent the genotype. This bit string represents how long the bit
string will be, and how it will be mapped to the phenotype of the solution.

13/46



Representation-Integer

• Integer representation, it is mostly used when it is required to find optimal
values for a set of variables in the domain of integer values. These values
can be unrestricted or restricted to some finite set. For example, if we try to
find a route in a square grid, and we are restricted to the set {0,1,2,3} which
represents {North, East, South, West} in this case using an integer coding, is
better than a binary, another example of this can be the representation of
networks.

14/46



Representation-Real

• For many problems, genotype representation with real-valued is the most
natural way of representation and current optimization applications use
real-valued coding9. This occurs when variables values come from a
continuous distribution rather than a discrete distribution. An example of
this consists of physical quantities representation as length, width, height,
or weight, some of these components can be real number values.

9Brabazon, O’Neill, and McGarraghy, Natural Computing Algorithms, 2015.

15/46



Evaluation

• The role of the evaluation function is to represent the requirements the
population should adapt to meet. It forms the basis for selection, and so it
facilitates improvements. More accurately, it defines what improvement
means.

• The evaluation function is commonly called the fitness function in EC.
• Typically, this function is composed from the inverse representation (to
create the corresponding phenotype) followed by a quality measure in the
phenotype space.

16/46



Selection

• Selection is one of the main operators used in evolutionary algorithms. Its
main objective is to find the best solutions in a population10.

• Selection criteria determine selection pressure, which is the degree to
which good fitness solutions are selected. If selection pressure is too low,
information from good parents will be spread too slowly throughout the
population, If selection pressure is too high, population will be stuck in a
local optima.

• Selection techniques can be classified in two categories Fitness
proportionate and Ordinal selection.

10Fogel, Bäck, and Michalewicz, Evolutionary computation. Vol. 1, Basic algorithms and
operators, 2000.

17/46



Selection - Fitness proportionate

• Roulette-wheel selection: The principal idea of this method is to divide the
candidates by their fitness. The greater the fitness of a solution, the more
likely it is to be chosen.

• Universal stochastic selection: Is a slightly modified version of the roulette
wheel instead of using a single selection point and turning the roulette
wheel again and again until all needed individuals have been selected,
we turn the wheel only once and use multiple selection points that are
equally spaced around the wheel. This way, all the individuals are chosen
at the same time11.

11Wirsansky, Hands-on genetic algorithms with Python.

18/46



Selection - Fitness proportionate

Figure 2: Roulette-wheel selection12 Figure 3: Universal stochastic selection

12Younes, Elkamel, and Areibi, “Genetic Algorithms in Chemical Engineering : A Tutorial”,
2008.

19/46



Selection - Ordinal selection

• Tournament selection: p solutions are selected and enter into a
tournament against each other. An individual with higher fitness in a group
of p solutions wins the tournament and is selected as a parent. The most
used tournament size is p = 2.

• Truncation selection: truncation selection, individuals are ordered
according to their fitness value and top (1/p) best ones are chosen to
perform recombination.

20/46



Recombination

• Recombination is the process by which a new solution is created using
information from two or more parents. It is considered one of the most
important characteristics in evolutionary algorithms. A traditional way in
which recombination operators perform ”crossover” is by marking
sub-segments in parents genomes to later assemble into a new
individual13.

• Recombination focuses on exploration, trying to search for promising new
zones in search space.

13Eiben and Smith, Introduction to Evolutionary Computing, 2015.

21/46



Recombination

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1

1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1

One-Point Crossover

Figure 4: Caption

22/46



Recombination

0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1

Two-Point Crossover

Figure 5: Caption

23/46



Mutation

• Mutation is a mechanism in which only one solution is involved. Solutions
selected as parents or offspring solutions are mutated by slightly
modifying their genetic information14

• The most used scheme is to perform a bitwise in the string-bit with a
certain probability pm.

• Mutation focuses on exploitation, trying to find new solutions in the
unexplored areas by recombination.

14Fogel, Bäck, and Michalewicz, Evolutionary computation. Vol. 1, Basic algorithms and
operators, 2000.

24/46



Mutation

Figure 6: bitwise

25/46



Replacement

• Survivors selection mechanism is responsible for managing a reduction
process in a EA’s population from a set of µ parents and λ offspring to a set
of µ individuals that form the next generation.

• There are many ways to do this, but a main one is to decide based on
individuals fitness. Another technique is based on population’s age, this
method is used in the SGA, where each individual exists only one cycle and
parents are discarded to be replaced by offspring. This criterion is known
as a generational population model.

26/46



Replacement

• Replace the worst: In this replacement scheme µ worst parents are
replaced. This can lead to a premature convergence, when solutions get
stuck in a limited search space zone.

• (µ+ λ) : comes from evolutionary strategies. It refers to the case in which
both sets of parents and offspring are ranked in a same set. Then top µ
solutions are kept for the next generation. This strategy can be seen as a
generalization of replacing the worst criterion.

• Elitism: Elitism is used to maintain the best solution(s) in the population.
Thus if the best solution is chosen to be replaced, and any offspring is
worse or equal. The offspring is discarded and the best individual is kept.

27/46



Genetic algorithm - resume

Algorithm 1: Simple or Canonical GA
1 t = 0;
2 Initialize Population(t);
3 Evaluate Population(t);
4 while Termination condition not satisfied do
5 t = t + 1;
6 Select m(t) Parents from Population(t − 1);
7 Recombine and mutate solutions in m(t);
8 Create offspring population m′(t);
9 Evaluate m′(t);
10 Select individuals for next generation;
11 end while

28/46



 
 

Section 2

Hands-OnGenetic Algorithms



 
 

Section 2

Hands-On Genetic Algorithms
2.1 Single-objective optimization prob-
lem



Single-objective optimization problem

• x is a decision variables The vector x of n decision variables is represented
by:

x = [x1, x2, . . . , xn]
T (1)

• A general single-objective optimization problem15 is defined as minimizing
(or maximizing) f(x) subject to gi(x) ≤ 0, i = {1, . . . ,m}, and
hj(x) = 0, j = {1, . . . , p}x ∈ Ω.

15Coello et al., Evolutionary Algorithms for Solving Multi-Objective Problems, 2007.

31/46



Single-objective optimization problem

• Constraints are imposed by environment characteristics or resources and
occur in most optimization problems. They are expressed in the form of
mathematical equalities or inequalities, hj(x) = 0, j = {1, . . . , p} and
gi(x) ≤ 0, i = {1, . . . ,m}. If the number of equality constraints is greater
than the number of decision variables, the problem is over constrained so
there are not enough degrees of freedom for optimization16

16Coello et al., Evolutionary Algorithms for Solving Multi-Objective Problems, 2007.

32/46



 
 

Section 2

Hands-On Genetic Algorithms
2.2 Knapsack problem



The knapsack problem

34/46



0–1 knapsack problem

• We are given a set of n items, each of which has attached to it some value
vi, and some weight wi. The task is to select a subset of those items that
maximizes the sum of the values, while keeping the summed weight within
some capacity Cmax.

• The goal is to:

Maximize :
n∑

i=1

vi · xi (2)

Subject to the constraints:
n∑

i=1

wi · xi ≤ Cmax (3)

35/46



The knapsack problem

Input: Nonnegative integers n, v1, . . . , vn,w1, · · · ,wn andW.
Task: Find a subset S ⊆ {1, · · · ,n} such that

∑
j∈S wj ≤ Cmax and

∑
j∈S vj is

maximum.

Box V W X
1 v1 = 4 w1 = 12 x1 = 0
2 v2 = 2 w2 = 2 x2 = 1
3 v3 = 1 w3 = 1 x3 = 1
4 v4 = 10 w4 = 4 x4 = 1
5 v5 = 2 w5 = 1 x5 = 1

36/46



0–1 knapsack problem

• It is a natural idea to represent candidate solutions for this problem as
binary strings of length n, where a 1 in a given position indicates that an
item is included and a 0 that it is omitted.

• When solving a problem it is also important to identify the information that
is needed, in this case, it seems clear the objective function but also need
the values(vi) of each item as well as its weight(wi), in addition to this we
need to define a maximum capacity Cmax.

37/46



Hands-on

Open code in Colab

38/46

https://colab.research.google.com/drive/1raaPNEeN5x-qstimX7iTQx5K0J2XdT6P?usp=sharing


 
 

Section 2

Hands-On Genetic Algorithms
2.3 The Multiobjective Optimization
Problem



Multiobjective optimization

• The Multiobjective Optimization Problem can then be defined (in words) as
the problem of finding17:

• “A. vector of decision variables which satisfies constraints and optimizes a
vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all the objective
functions acceptable to the decision maker.

17Coello et al., Evolutionary Algorithms for Solving Multi-Objective Problems, 2007.

40/46



Multiobjective optimization

Minimize/Maximize fm(x),m = 1, 2, . . . , k;
subject to gj(x) ≥ 0, j = 1, 2, . . . ,m;

hk(x) = 0, k = 1, 2, . . . , p;

x(L)i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , t;

 (4)

• with k objectives, m and p are the number of inequality and equality
constraints. A solution x ∈ Rn is a vector of n decision variables:
x = [x1, x2, . . . , xn], which satisfy all constraints and variable bounds18.

18Coello et al., Evolutionary Algorithms for Solving Multi-Objective Problems, 2007.

41/46



Multiobjective optimization

2x

1x

2f

1f

Decision Variable 
Space

Objective Function 
Space

kn R:RF →


{ }nRxX ∈=


{ }kRyY ∈=


Pareto 
Front

Feasible 
Region

Infeasible 
Region

Figure 7: Mapping of decision variables space to the objective function space.
Feasible solutions and zone are marked in blue. In the decision variable space, the
Pareto optimal set is marked with red solutions and its mapping to the objective
function space creates the Pareto front.

42/46



Multiobjective optimization

• Pareto dominance19: A vector u = (u1, u2, . . . , uk) is said to dominate
another vector v = (v1, v2, . . . , vk) (denoted by u ⪯ v) if and only if u is
partially less than v, this is specified as follows:
∀i ∈ {1, . . . k}, ui ≤ vi and ∃i ∈ {1, . . . k} : ui) < vi.

• Pareto Optimal Set: For a given MOP and F(x), the POS P∗ is determined
by:

P∗ = {x ∈ Ω | ¬∃x′ ∈ Ω F(x′) ⪯ F(x)} (5)

• Pareto Front :
For a given MOP, F(X) and POS, P∗, the Pareto Front PF∗ can be
expressed as:

PF∗ = {u = F(x) | x ∈ P∗} (6)

19Coello et al., Evolutionary Algorithms for Solving Multi-Objective Problems, 2007.

43/46



Resolving a MOP in Pymoo

• input: x
• Task: Find the vector x that minimize the follow:

f1(x) = 100(x21 + x22),
f2(x) = (x1 − 5)2 + x22,
Subject to:
g1(x) ≡ 2(x1 − 0.1)(x1 − 0.9)/0.18 ≤ 0,

g2(x) ≡ −20(x1 − 0.4)(x1 − 0.6)/4.8 ≤ 0,

−2 ≤ x1 ≤ 2,

−2 ≤ x2 ≤ 2

(7)

44/46



Hands-on

Open code in Colab

45/46

https://colab.research.google.com/drive/1Ph48mtPuFhlRV5ndBrU7BbW3w3Hbg8Ua?usp=sharing


 
 

Questions?



 
 

Section 3

References



References I

Alba, Enrique and Bernabé Dorronsoro. Cellular Genetic Algorithms. Vol. 42. Operations
Research/Computer Science Interfaces Series. Boston, MA: Springer US, 2008. ISBN:
978-0-387-77609-5. DOI: 10.1007/978-0-387-77610-1. URL:
http://link.springer.com/10.1007/978-0-387-77610-1.

Brabazon, Anthony, Michael O’Neill, and Seán McGarraghy. Natural Computing Algorithms.
Natural Computing Series. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. ISBN:
978-3-662-43630-1. DOI: 10.1007/978-3-662-43631-8. URL:
www.springer.com/series/http://link.springer.com/10.1007/978-3-662-43631-8.

Coello, Carlos A Coello et al. Evolutionary Algorithms for Solving Multi-Objective Problems.
Genetic and Evolutionary Computation Series. Boston, MA: Springer US, 2007, p. 315. ISBN:
978-0-387-33254-3. DOI: 10.1007/978-0-387-36797-2. URL:
http://link.springer.com/10.1007/978-0-387-36797http:
//link.springer.com/10.1007/978-0-387-36797-2.

Eiben, A.E. and J.E. Smith. Introduction to Evolutionary Computing. Natural Computing Series.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. ISBN: 978-3-662-44873-1. DOI:
10.1007/978-3-662-44874-8. URL:
http://link.springer.com/10.1007/978-3-662-44874-8.

2/3

https://doi.org/10.1007/978-0-387-77610-1
http://link.springer.com/10.1007/978-0-387-77610-1
https://doi.org/10.1007/978-3-662-43631-8
www.springer.com/series/ http://link.springer.com/10.1007/978-3-662-43631-8
https://doi.org/10.1007/978-0-387-36797-2
http://link.springer.com/10.1007/978-0-387-36797 http://link.springer.com/10.1007/978-0-387-36797-2
http://link.springer.com/10.1007/978-0-387-36797 http://link.springer.com/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-662-44874-8
http://link.springer.com/10.1007/978-3-662-44874-8


References II
Fogel, David B., Thomas Bäck, and Zbigniew. Michalewicz. Evolutionary computation. Vol. 1, Basic

algorithms and operators. Institute of Physics Pub, 2000, p. 384. ISBN: 0750306645.
Sastry, Sastry, David E. Goldberg, and Graham Kendall. Search Methodologies. Ed. by

Edmund K. Burke and Graham Kendall. Boston, MA: Springer US, 2014. Chap. 4, p. 716. ISBN:
978-1-4614-6939-1. DOI: 10.1007/978-1-4614-6940-7. arXiv: arXiv:1011.1669v3. URL:
https://link.springer.com/content/pdf/10.1007%2F978-1-4614-6940-7.pdfhttp:
//link.springer.com/10.1007/978-1-4614-6940-7.

Wirsansky, Eyal. Hands-on genetic algorithms with Python. ISBN: 9781838557744.
Younes, Abdunnaser, Ali Elkamel, and Shawki Areibi. “Genetic Algorithms in Chemical Engineering

: A Tutorial”. In: 2008.

3/3

https://doi.org/10.1007/978-1-4614-6940-7
https://arxiv.org/abs/arXiv:1011.1669v3
https://link.springer.com/content/pdf/10.1007%2F978-1-4614-6940-7.pdf http://link.springer.com/10.1007/978-1-4614-6940-7
https://link.springer.com/content/pdf/10.1007%2F978-1-4614-6940-7.pdf http://link.springer.com/10.1007/978-1-4614-6940-7

	Introduction to Genetic Algorithms
	History
	Genetic algorithm and their components

	Hands-On Genetic Algorithms
	Single-objective optimization problem
	Knapsack problem
	The Multiobjective Optimization Problem

	Appendix
	References
	References


